How Do We Reconcile Models and Observations?

Mark R. Abbott College of Oceanic and Atmospheric Sciences Oregon State University

Ecology, Physiology, and Physics

- Does physics drive structure and variability of phytoplankton ecosystems?
 - What are roles of physiology and ecological processes?
 - Regulation versus limitation
- Evolutionary and ecological response depends on:
 - Heterogeneity of environment
 - "Perception" by organism
- Will climate change be characterized by changes in patterns of <u>variability</u> as well as by changes in <u>mean conditions</u>?

<u>"There are more things, Horatio, than are</u> <u>dreamed of in all your books..."</u>

- What physical processes must we resolve?
 - Interannual variability
 - Mesoscale variability
- How much detail do we need in the ecosystem models?
 - Zooplankton grazing
 - Multiple nutrient regulation
 - Viruses and vitamins
- Which biogeochemical processes must be modeled explicitly?
 - Nutrient regeneration
- Stop Dave Karl from thinking, writing, and measuring

Where We Started

- Observations
 - Transects and process studies
 - Moorings for ocean physics
- Models
 - The 3-Box World
 - Warm, cold, and deep
 - The Aquarium Ocean
 - Flat bottom, rectangular sides
 - N/P/Z models (Riley, Walsh, Wroblewski)
 - Heuristic models

Where We Went

Observations

- Extensive tea-bag dipping along global transects
- High-resolution biophysical moorings
- Satellite remote sensing, drifters
- New variables and new processes
- Models
 - Eddy-permitting OGCM's
 - Adjoint and other inverse techniques
 - Multi-compartment N/P/Z models with O(100) parameters

Got Science?

- Understanding requires close integration between observing systems and modeling/analysis
 - As our understanding of the ocean system develops, we will refine our observing requirements and add new capabilities
 - Or are we driven by technology and what is feasible?
- More data or better data?
 - What are the tradeoffs between making higher resolution but lower quality measurements and high accuracy but sparse measurements?
 - What will improve our models and hence our understanding?
- More complex models or more understandable models?
 - Balance between implicit and explicit processes
- The need for quantitative tests for both models and observations
 - Move beyond the "Looks Good" version of statistics

Challenges for the Future

- Observations drive understanding and understanding drives observations
- More observations, better models
 - Will this necessarily lead to improved understanding?
 - Or reduced uncertainty?
 - Or more uncertainty, following Dave Karl's study of the North Pacific Subtropical Gyre
- Keeping up with technology while maintaining a solid scientific foundation
 - Do I only need to know Matlab to use a Fast Fourier Transform?
- Sensors become models
 - Satellites measure radiance, not chlorophyll
 - Modern sensors are far removed from the actual variable
 - Does acoustic backscatter = copepod biomass?
- Specialization vs. a broad perspective
 - Increasingly complicated technology and models may require increasing specialization

And a Caution

- Our science will become increasingly linked to policy and to economic issues
 - And perhaps even corporate issues?
- Our research will increasingly be under scrutiny by the public
 - Will iron fertilization come under environmental regulation?
 - I ssue is not necessarily the direct environmental impacts but rather the issues under study (such as carbon sequestration) may be controversial
 - Marine mammal studies and acoustical sampling
 What you don't know, you can't regulate (or utilize)
- But certainly the next generation of researchers are up to these challenges!