Seeing the Past Through JGOFS Spectacles

T.F. Pedersen

University of Victoria

Collaborators:

- Jennifer McKay (UQAM)
- Raja Ganeshram (U. Edinburgh)
- Ingrid Hendy (U. Michigan)
- Stephanie Kienast (WHOI)
- Ryuji Tada (Tokyo)
- Jacqueline Flueckiger (Bern)
- Steve Calvert (UBC)

The Original JGOFS Mission:

"To investigate the time-varying fluxes of carbon in the ocean"

AII54-25PC Central Panama Basin

500 kyr record of organic carbon abundance

Pedersen et al., 1991

AII54-25PC Central Panama Basin

500 kyr of Organic Carbon Abundance

Nitrogen Isotopes As Paleotracers

• Relative Nutrient Utilization

Phytoplankton discriminate against ¹⁵N ($\epsilon = -5 \%$) when NO₃⁻ is abundant.

As NO_3^- utilization proceeds with distance from the nitrate source, the product becomes isotopically heavier. Discrimination has little effect on $\delta^{15}N$ when NO_3^- is scarce.

• Denitrification

Reduction of NO_3^- by denitrifying bacteria strongly fractionates the product N_2 (which is depleted in ¹⁵N) from the substrate. The residual NO_3^- becomes progressively enriched as denitrification proceeds and N_2 and N_2O are lost to the atmosphere.

Nitrogen Isotopes in Surface Sediments

Nitrate Climatology (Levitus)

Transect Across the Eastern Equatorial Pacific at ~90° W:

"Lighter" 15N during the LGM in conjunction with higher C_{org} % implies dominance of upwelling.

Farrell et al., 1995

But, when we moved from the open equatorial regions to the continental margins, a different picture emerged...

Paleoproductivity Indices, NW Mexican Margin, off Mazatlan

Nitrogen Isotopes As Paleotracers

• Relative Nutrient Utilization

Phytoplankton discriminate against ¹⁵N ($\varepsilon = \sim 5 \%$) when NO₃⁻ is abundant. As NO₃⁻ utilization proceeds with distance from the nitrate source, the product becomes isotopically heavier. Discrimination has little effect on δ^{15} N when NO₃⁻ is scarce.

• Denitrification

Reduction of NO_3^- by denitrifying bacteria strongly fractionates the product N_2 (which is depleted in ¹⁵N) from the substrate. The residual NO_3^- becomes progressively enriched as denitrification proceeds and N_2 and N_2O are lost to the atmosphere.

Nitrogen Species and Isotopic Composition in the Eastern Tropical North Pacific

Brandes et al., 1998, GBC

Proxy Denitrification History, NW Mexican Margin

Dissolved Oxygen Concentration on the $\sim 27.8 \sigma_T$ Surface

Illustration by Ingrid Hendy

S. Kienast et al., 2002, Paleoceanography

Kienast et al. 2002

S. Kienast et al., 2002, Paleoceanography

Greenland-Baja Comparison

MONA Shipboard Party, unpublished

Key Coring Sites and Surface Currents, Southern Californian Margin

ODP Hole 1017E, S. California Margin 1 km water depth

Hendy and Pedersen, in prep

Dissolved Oxygen Concentration on the $\sim 27.8 \sigma_T$ Surface

Illustration by Ingrid Hendy

ODP Hole 1017E, S. California Margin 1 km water depth

Hendy and Pedersen, in prep

Silver and Cadmium

The Ag/Cd ratio is thought to represent increases/decreases in diatom production relative to coccolithosphorids

Hendy and Pedersen, in prep

Summary 1:

• Abrupt climate and hydrographic changes were common and possibly (probably?) synchronous in the North Atlantic and the NE Pacific during the Last Glacial.

• Off California, climate variations were accompanied by biological responses in surface waters *and* changes in oxygenation at 1 km water depth.

• The time-varying vertical flux of carbon (JGOFS!) was a (critical?) factor in modulating intensity of denitrification in the northeast subtropical Pacific.

A final question:

Are there implications for global climate bound up in variations in the intensity of denitrification in the NE tropical Pacific (and elsewhere)?

<u>Modern N cycle background:</u>

Fixed N supply to oceans is ~100-120 Tg yr⁻¹, but the loss is roughly 200 Tg yr⁻¹. <u>*Deficit: <100 Tg yr -1*</u>.

Imbalance is partly compensated by N_2 fixation, but the integrated contribution from this source is not well known.

Implication:

The modern ocean is losing nitrogen. But if $NO_3^$ reduction was to be switched off, there would be a net gain of N, allowing "excess" P to be utilized and CO_2 to be drawn down.

ODP Hole 1017E, S. California Margin 1 km water depth

Hendy and Pedersen, in prep

Flueckiger et al., Science, 1999

Unpublished data, courtesy Jacqueline Flueckiger, University of Bern

Oman Margin, Arabian Sea

Altabet et al., 2002 Nature

High-frequency variability of denitrification intensity in the Arabian Sea

Altabet et al., 2002

NB: the timescale for the Arabian Sea cores is not independent, but was derived by correlation to GRIP. It is thus assumption dependent.

Altabet et al., 2002

Summary 2:

• The coupling of upwelling, export production and consequent denitrification in key oxygen minima may have had significant implications for climate but *indirectly*, through the nutrient-abundance loop.

• Emerging pN_2O records support this inference.

• With respect to the impact of the time-varying fluxes of carbon on pCO_2 , both quantification and attribution remain compelling problems.

Continuing Challenges or Needs: (PaleoJGOFS II?)

• More high-resolution paleogeochemical records from underexplored areas (e.g. the western coast of South America, the western Canadian margin, the Guatemalan margin).

• Continued refinement of interpretations based on empirical data with inferences from modelling (and vice versa). *Integration and interdisciplinarity remain key*.