Examining Human Impacts on Global Biogeochemical Cycling via the Coastal Zone & Ocean Margins

L. Talaue-McManus

Rosenstiel School of Marine & Atmospheric Science University of Miami JGOFS Open Science Meeting, May 5-8, 2003 Washington, D. C., USA

Shelf area = 7 % of ocean surface

WORLDBATH topography (IRB Climate Data library)

Shelf = 20% of Ocean NPP; supports 90% of Marine Fisheries Production

Coastal population = 2.2 billion (40% of total) (Burke et al., 2001)

Anthropogenic drivers

> 90% of global population in tropical developing world by 2050 (UN 2002)
 > Growth points: coastal and urban centers; 2N in 30 years
 > Consumption = F (Population, Affluence, Technology) (Ebdiable 1 Jabreen 1071)

Technology) (Ehrlich & Johnson 1971)

> Waste generation:

Agricultural waste, Domestic & Industrial

Man & Continental Margin Biogeochemistry

- Nutrient loading
- Ecosystem response : Eutrophication cascade
 - Eutrophication historically & currently compounded by overfishing
 - Hypoxic zones, denitrification & competing microbial pathways, and greenhouse gases
 - Additional jeopardy from aquaculture & damming

Eutrophication: Early Records

Region	Onset	Global Population ⁶	
Old World			
≻Oslofjord ¹	Mid 1800s	1 b (1804)	
≻North Sea ²			
New World			
➢New Bedford Estuary ³		2 b (1927)	
≻Chesapeake Bay ⁴			
>Gulf of Mexico ⁵	Mid 1900s	3 b (1960)	

¹Dale et al. 1999; ²Billen et al. 1999; ³Pospelova et al 2002; ⁴Zimmerman & Canuel 2000; ⁵Rabalais et al. 2002; ⁶UN 1998

Inorganic Nutrient Loading

	DIP, 10 ⁹ mols yr ⁻¹			DIN, 10 ⁹ mols yr ⁻¹		
Period	Natural	Anthro	Total	Natural	Anthro	Total
1890s (Galloway & Cowling 2002)						360
1970s (Meybeck 1982)	13	13	26	320	160	480
1990s (Smith et al. 2003)	21	53	74	400	950	1350
Upwelling (Chen et al., in press)			500			10000

Inorganic loading & fertilizer use (Tilman et al 2001)

Year	Population	Irrigated land		
	(noiiiia)	(10 ⁶ ha)		
2000	6.1	280	34.3	87.0
2020	7.5	367	47.6	135.0
2050	8.6	529	83.7	236.0

Organic nutrient loading

	10 ⁹ Moles = Gmoles			
Period	DOP	TDP	DON	TDN
1970s (Meybeck 1982)	39	65	1060	1540

Organic loading & Organic waste production

Matter	O ₂	С	Ν	Р
Phytoplankton				
>Redfield et al. '63	-138	106	16	1
≻Takahashi et al. '85	-175	122	16	1
Organic waste (San Diego-McGlone et al. 2000)	- 62	40	12	1

- Enriched in nutrients relative to C; enriched in N relative to Redfield ratio
- $C:O_2$ for waste = 1.55;
- C:O₂ for phytoplankton = 1.30-1.43

Area-specific rates (NEP) & net of (N fixation-denitrification highest in systems with exchange times <100 d and areas < 1000 km²

(Smith et al. submitted paper for CMTT synthesis book)

Ecosystem response to historical overfishing + heavy nutrient load

Loss of suspension feeders & seagrasses
Add nutrients → Microbialization of the coastal ocean

Eutrophication + Upwelling => Anoxia => N_2O efflux (Naqvi et al. 2000)

Western Indian Shelf:

- Intensified O₂ depletion because of eutrophication
- N2O efflux =
 0.06-0.39 Tg, (6 mos for
 180,000 km²) = annual
 efflux from all of Arabian
 Sea

Gulf of Mexico: Hypoxia and suppressed benthic denitrification (Childs et al. 2002)

- No N₂O release perhaps because of nitrate limitation or competition from organisms capable of DNRA
- Increase in residence time of reactive nitrogen → hypoxia maintained

Aquaculture & Fisheries

7.4 M tons (1980) to 42 M tons (1999) (USD 5.3 B)
 Growth rate: 10% pa (terrestrial is 3%; capture fish is 0.8%)
 30% of per capita food fish supply in 1997 from culture
 Global projection: 47 M tons in 2010

(SOFA 2002)

Collapsing fisheries & Aquaculture

Figure 3. Total World Aquaculture Production in Developing and Developed Countries

Developing countries >> Developed nations (SOFA 2002)

Ecological footprint of a semiintensive shrimp farm

Filter nutrient load: 22 ha for every ha Intensive farm; 3 ha for a ha semi-intensive farm
Provide postlarvae: 160 X farm area (Folke et al. 1998)

Supporting shrimp farms

Mangrove Area1920500,000 ha1988272,000 ha1990132,500 ha1994120,500 ha1977106,133 ha

Fishponds 1952 88,681 ha 1988 224,000 ha

To support farms in 1952, Philippines needed at least 16 M ha.

If mangroves were just for shrimp ponds, cover in 1920 could support at most 2800 ha

Dams

Three Gorges Dam (proposed): Reduced freshwater outflow by 10% would reduce upwelling rate by 10%, thus reducing fisheries production in East China Sea. Damming has greater effects on deltaic processes than on fisheries production which is mostly subsidized by upwelling (Chen, 2000)

Aswan Dam (1965): Nile river inputs replaced by anthropogenic nutrients from fertilizer and sewage. Fish and prawn landings have increased beginning early 1982 (Nixon 2003).

Some comments

- Human imprint significant on continental margins, specially big on small nearshore systems.
- Potential for this to expand cross-shelf with aeolian deposition of anthropogenic iron on continental shelf and with N₂O emitting hypoxic zones
- Dire need to understand microbial processes that drive impacted systems
- Mitigation will need controls for all waste sources as well as constraints on overfishing