Climate sensitivity:

what observations tell us about model predictions

Corinne Le Quéré Max-Planck-Institut für Biogeochemie, Jena, Germany

Acknowledgements:

Laurent Bopp, Karen Kohfeld, Erik Buitenhuis, Olivier Aumont

no biology, no climate change

(J. Orr and OCMIP-2 participants)

no biology, no climate change

(J. Orr and OCMIP-2 participants)

outline

oceanic carbon cycle

biological activity

how do marine ecosystems respond to:

- elevated CO₂
- warming
- nutrient supply
- stratification

physical response to elevated CO₂

oceanic carbon cycle

nutrient-based models

(Najjar et al., 1992; Maier-Reimer 1993)

NPZD

ecosystem models

Modelled changes in export production at 2xCO₂

- reduction in nutrient supply
- increase of oligotrophic gyres
- longer growing season

(Bopp 2001)

(Prentice et al., 2001)

(Prentice et al., 2001)

CLIMATE RESPONSE OF OCEANIC UPTAKE

	Sarmiento	Matear and	Joos et al.
	et al. (1998)	Hirst (1999)	(1999)
Time Span	1990-2065	1850-2100	1765-2100
Warming Effect	-11%	-12%	-13%
Circulation Effect	-22%	-10%	-3%
Biological Effect	+24%	+8%	+6%
TOTAL	-9%	-14%	-10%

(slide from J. Sarmiento)

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	0 to -6% <mark>[nutrient supply]</mark> - low lat + high lat
100,000 yrs variations		
interannual variations		

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	-0 to -6% <mark>[nutrient supply]</mark> - low lat + high lat
100,000 yrs variations		
interannual variations		

100,000 yrs variations

(data from Petit et al., 1999)

Model simulations of the last glacial maximum

- Cooling of SST (CLI MAP 1981)
- Circulation Changes (Simulation OPA model, O. Marti)
- Increased Sea I ce in Winter (Crosta et al. 1998)
- Increased dust deposition on the ocean (Mahowald et al. 1999)

total LGM impact on export production

- decreased export production (-7 %)
- decreased atmospheric CO₂ (-30 ppm)

(Bopp et al., 2003)

total LGM impact on export production

iron LGM impact on export production

diatoms relative abundance

Latitude

- increased export production (+6 %)
- but increase of oligotrophic gyres
- shift from nano-phyto to diatoms

(Bopp et al., 2003)

Evaluation of Paleo-Data

Paleo-Export Proxies:

Opal (SiO₂)
Calcium Carbonate (CaCO₃)
Organic Carbon
Biomarker (C37 Alkenones)

•¹⁰Be

•²³¹Pa

•Excess Barium

Authigenic Uranium
Authigenic Cadmium
Bonthia Examinifana Elux

•Benthic Foraminifera Fluxes

Ranked Classes:

Ranking Criteria:

Age Models

- •Radiocarbon dating (AMS)
- •Oxygen Isotope Stratigraphy
- •Lithogenic Correlation

Flux measurement

- •Constant Flux Normalization (²³⁰Th)
- •Mass Accumulation Rates
- •Sediment Concentration

Proxy Agreement

•How many?

•Percentage agreement

Data Confidence

⊖ high

O medium

o low

(Kohfeld et al., in prep.)

Stage 5ad-today

change in export production

Unpublished map not available

LGM-Stage 5ad

Unpublished map not available

(Kohfeld et al., in prep.)

change in export production

Data-base (Kohfeld et al., in prep.) OPA-PI SCES model (Bopp et al. 2003) (gC m⁻² yr⁻¹)

change in export production

Data-base (Kohfeld et al., in prep.) OPA-PI SCES model (Bopp et al. 2003) (gC m⁻² yr⁻¹)

CO₂ drawdown with this model 30 ppm *SST* + *SSS* (+ sea ice + circ.) = -15 ppm *Dust increase* -15 ppm

(Bopp et al., 2003)

$\rm CO_2$ reduction due to dust at the LGM	Reference
15 ppm	Bopp et al. in press
8 ppm	Archer et al. 2000
40 ppm	Watson et al., 2000

reasonable agreement considering the phasing of dust/CO₂ changes

(Watson et al., 2000)

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	0 to -6% <mark>[nutrient supply]</mark> - low lat + high lat
100,000 yrs variations	-8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left	~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio]
interannual variations		

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	0 to -6% <mark>[nutrient supply]</mark> - low lat + high lat
100,000 yrs variations	-8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left	~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio]
interannual variations		

interannual CO₂ variability

20 years

(Le Quéré et al., 2003)

equatorial Pacific

 CO_2

During El Nino events:

- warming
- decreased upwelling
- decreased export production

(Bousquet et al., 2000; data from Feely et al., 1999)

northern sub-tropics

⁽Peylin et al., in prep)

North Atlantic

(Gruber et al., 2002)

Standard deviation of interannual signal

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	0 to -6% <mark>[nutrient supply]</mark> - low lat + high lat
100,000 yrs variations	-8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left	~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio]
interannual variations	+/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/- 0.05 ppm mid lat [solub.] +/- 0.05 ppm high lat [circ + bio]	

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	0 to -6% <mark>[nutrient supply]</mark> - low lat + high lat
100,000 yrs variations	-8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left	~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio]
interannual variations	+/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/- 0.05 ppm mid lat [solub.] +/- 0.05 ppm high lat [circ + bio]	

Standard deviation of export production variability 1997-2002 (mol C/m²/yr)

SeaWiFS chl*a*, PP from Behrenfeld and Falkowski (1997), ef-ratio from Laws et al. (2000)

nutrient-based models (HAMOCC3)

(Maier-Reimer 1993)

Standard deviation of export production variability (mol C/m²/yr)

SeaWiFS chl*a*, PP from Behrenfeld and Falkowski (1997), ef-ratio from Laws et al. (2000)

NPZD

Standard deviation of export production variability (mol C/m²/yr)

SeaWiFS chl*a*, PP from Behrenfeld and Falkowski (1997), ef-ratio from Laws et al. (2000)

PISCES model based on plankton functional types

Standard deviation of export production variability (mol C/m²/yr)

SeaWiFS chl*a*, PP from Behrenfeld and Falkowski (1997), ef-ratio from Laws et al. (2000)

Dynamic Green Ocean Model

Standard deviation of export production variability (mol C/m²/yr)

SeaWiFS chl*a*, PP from Behrenfeld and Falkowski (1997), ef-ratio from Laws et al. (2000)

(Le Quéré et al., in prep.)

diatoms

coccolithophorids

nanophytoplankton

(Chavez et al 2003)

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	0 to -6% <mark>[nutrient supply]</mark> - low lat + high lat
100,000 yrs variations	-8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left	~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio]
interannual variations	+/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/- 0.05 ppm mid lat [solub.] +/- 0.05 ppm high lat [circ + bio]	+/- 1%

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	0 to -6% <mark>[nutrient supply]</mark> - low lat + high lat
100,000 yrs variations	-8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left	~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio]
interannual variations	+/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/- 0.05 ppm mid lat [solub.] +/- 0.05 ppm high lat [circ + bio]	+/- 1%

	CO ₂	export production
	5 to 15% [warming]	0 to 6% [putriont cumply]
predictions	-5 t0 -15% [warming]	- low lat + high lat
100,000 yrs variations	-8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left	~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio]
intorannual	1/03 nnm	1/ 1%

variations

+/- 0.3 ppm +/- 0.3 ppm tropics **[circ]** +/- 0.05 ppm mid lat **[solub.]** +/- 0.05 ppm high lat [circ + bio]

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	0 to -6% [nutrient supply] - low lat + high lat
100,000 yrs variations	-8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left	~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio]
interannual variations	+/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/- 0.05 ppm mid lat [solub.] +/- 0.05 ppm high lat [circ + bio]	+/- 1%

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	0 to -6% [nutrient supply] - low lat + high lat
100,000 yrs variations	-8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left	~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio]
interannual variations	+/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/- 0.05 ppm mid lat [solub.] +/- 0.05 ppm high lat [circ + bio]	+/- 1%

plankton functional types

	CO ₂	export production
100 yr predictions	-5 to -15% [warming]	0 to -6% [nutrient supply] - low lat + high lat
100,000 yrs variations	-8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left	~0 [iron + circ] + mid-low lat [iron] - high lat <mark>[circ + bio]</mark>
interannual variations	+/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/- 0.05 ppm mid lat [solub.] +/- 0.05 ppm high lat <mark>[circ + bio]</mark>	+/- 1%

plankton functional types

linkages between biogeochemistry and physics (including the coastal ocean)

References

- Aumont, O., S. Belviso, and P. Monfray, Dimethylsulfoniopropionate (DMSP) and dimethy sulfide (DMS) sea surface distributions simulated from a global three-dimensional ocean carbon cycle model, J. Geophys. Res., 107, 148-227, 2002.
- Aumont, O., E. Majer-Reimer, S. Blain, and P. Pondaven. An ecosystem model of the global ocean including Fe, Si, P co-limitations, J. Geophys. Res., in press.
- Battle, M., M. L. Bender, P. P. Tans, J. W. C. White. J. T. Ellis, T. Conway, and R. J. Francey, Global carbon sinks and their variability inferred from atmospheric O2 and $\delta^{13}C$. Science, 287, 2467-2470. 2000.
- Behrenfeld, M., and P. G. Falkowski, A consumer's guide to phytoplankton primary productivity models. Limnology and Oceanography. 42, 1479-1491. 1997.
- Bopp, L., P. Monfray, O. Aumont, J.-L. Dufresne, H. LeTreut, G. Madec, L. Terray, and J. Orr. Potential impact of climate change on marine export production, Global Biogeochem. Cycles, 15, 81-100. 2001.
- Bopp, L., K. Kohfeld, C. Le Quéré, and O. Aumont. Dust impact on marine biota and atmospheric CO₂ during glacial periods, Paleoceanography, 18, 10.1029/2002PA000.810, 2003.
- Bousquet, P., P. Peylin, P. Clais, C. Le Quéré, P. Friedlingstein, and P. P. Tans, Regional changes of CO2 fluxes over land and oceans since 1980, Science. 290, 1342-1346, 2000.
- Brix, H., N. Gruber, and C. D. Keeling, Interannual variability in the surface ocean carbon cycle at station ALOHA near Hawaii, Global Biogeochem. Cydes. in prep.
- Buitenhuis, E. T., and C. Le Quéré et al., Explicit representation of coccolithophorids in a Dynamic Green Ocean model, in prep., pp. http://www.bgcjena.mpg.de/bgc.prentice/projects/green.ocean/start1.html Laws, E. A., P. G. Falkowski, W. O. S. Jr., H. Ducklow,
- Chavez, F. P., J. Ryan, S. E. Lluch-Cota, and M. . N. C., From anchovies to sardines and back: multidecadal change in the Pacific Ocean, Science, 299, 217-221, 2003.
- CLIMAP, Seasonal reconstruction of the earth's surface at the last glacial maximum, Tech. rep., Map and Chart Ser. MC 36, Geol. Soc. Am., Boulder, Colorado, 1981.

- Crosta, X., J.-J. Pichon, and L. Burckle, Reappraisal of antarctic seasonal sea-ice at the Last Glacial Maximum, Geophys. Res. Lett., 25, 2703-2706, 1998.
- Fasham, M. J. R., J. L. Sarmiento, R. D. Slater, H. W. Ducklow, and R. Williams, Ecosystem behavior at Bermuda Station "S" and Ocean Weather Station "India": A general circulation model and observational analysis, Global Biogeochem. Cycles, 7, 379-416, 1993.
- Feely, R. A., R. Wanninkhof, T. Takahashi, and P. Tans, Influence of El Niño on the equatorial Pacific contribution to atmospheric CO₂ accumulation. Nature. 398.597-601.1999.
- Gruber, N., and C. D. Keeling, An improved estimate of the isotopic air-sea disequilibrium of CO₂: Implications for the oceanic untake of anthropogenic CO₂. Geophys. Res. Lett., 28, 555-558, 2001.
- Gruber, N., C. D. Keeling, and N. R. Bates, Interannual variability in the North Atlantic ocean carbon sink, Nature, 298, 2374-2378, 2002.
- Heimann, M., and E. Maier-Reimer, On the relations between the oceanic uptake of CO2 and its carbon isotopes, Global Biogeochem, Cycles, 10, 89-110. 1996.
- Joos, F., G.-K. Plattner, T. F. Stocker, O. Marchal, and A. Schmittner, Global warming and marine carbon cycle feedbacks on future atmospheric CO₂, Science. 284.464-467.1999.
- Keeling, R. F., C. D. Keeling, and A. C. Manning, Atmospheric constraints on the uptake of carbon dioxide by the oceans and the land biota , AMS Abstract, 5.8.2001.
- Kohfeld, K., C. Le Quéré, and S. Harrison, Limited role of marine biology in glacial-interglacial CO₂ cycles. in prep.
- Langenfelds, R. L., R. J. Francey, L. P. Steele, M. Battle, R. F. Keeling, and W. F. Budd, Partitioning of the global fossil co2 sink using a 19-year trend in atmospheric o2, Geophys. Res. Lett., 26, 1897-1900, 1999.
- and J. J. McCarthy, Temperature effects on export production in the open ocean, Global Biogeochem. Cycles, 14, 1231-1246, 2000.
- Le Quéré, C., and the participants of the 2nd Dynamic Green Ocean Workshop, Towards a dynamic green ocean for earth system modelling. Global Change Biology, pp. http://www.bgcjena.mpg.de/bgc_prentice/projects/green.ocean/start1.html, in prep.

- Le Quéré, C., J. C. Orr, P. Monfray, O. Aumont, and G. Madec, Interannual variability of the oceanic sink of CO₂ from 1979 through 1997, Global Biogeochem. Cycles, 14, 1247-1265, 2000.
- Le Quéré, C., et al., Two decades of ocean CO2 sink and variability, Tellus, 55B, 649-656, 2003.
- Mahowald, N., K. K. M. Hansson, Y. Balkanski, S. P. Harrison, I. C. Prentice, M. Schulz, and H. Rodhe. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments, J. Geophys. Res., 104, 15,895-15,916, 1999.
- Maier-Reimer, E., Geochemical cycles in an ocean general circulation model: preindustrial tracer distributions, Global Biogeochem. Cycles, 7, 645-677, 1993.
- Maier-Reimer, E., U. Mikolajewicz, and A. Winguth. Future ocean uptake of CO2: Interaction between ocean circulation and biology, Clim. Dyn., 12, 711-721, 1996.
- Manning, A. C., Temporal variability of atmospheric oxygen from both continuous measurements and a flask sampling network: Tools for studying the global carbon cycle, Ph.D. thesis, Univ. of California, San Diego, 2001.
- Matear, R. J., and A. C. Hirst, Climate change feedback on the future oceanic CO2 uptake, Tellus, Ser.B. 51. 722-733, 1999.
- McKinley, G. A., Interannual variability of air-sea fluxes of carbon dioxide and oxygen, Ph.D. thesis, Massachusetts Institute of Technology, USA, 2002.
- Moore, J. K., S. C. Doney, J. A. Kleypas, D. M. Glover and I. Y. Fung. An intermediate complexity marin ecosystem model for the global domain. Deep SeRes., 49, 403-462, 2001.
- Najjar, R. G., J. L. Sarmiento, and J. R. Toggweiler Downward transport and fate of organic matter i. the ocean: Simulations with a general circulation model, Global Biogeochem. Cycles, 6, 45-76, 1992.
- Petit, J. R., et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core. Antarctica, Nature, 399, 429-436, 1999.
- Pevlin, P., P. Bousquet, C. Le Quéré, P. Friedlingstein, S. Sitch, G. McKinley, N. Gruber, P. Ciais, and P. Rayner, Interannual CO₂ fluxes as deduced by inverse modeling of atmospheric CO₂ and by models of the ocean and land carbon cycle, Tellus, in prep.
- Prentice, I. C., et al., The carbon cycle and atmospheric CO₂, in Climate Change: The Scientific Basis, the contribution of WGI of the IPCC to the IPCC Third

- Assessment Report (TAR), edited by J. T. Houghton and D. Yihui, pp. 183-237. Cambridge University Press, Cambridge, U. K., 2001, third Assessment Report of the International Panel on Climate Change.
- Reynolds, R. W., and T. M. Smith, Improved global sea surface temperature analyses using optimum interpolation, J. of Clim., 7, 929-948, 1994.
- Sabine, C. L., et al., Distribution of anthropogenic co2 in the pacific ocean, Global Biogeochem. Cycles, 2002.
- Sarmiento, J. L., T. M. C. Hughes, R. J. Stouffer, and S. Manabe, Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393. 245-249, 1998.
- Sarmiento, J. L., et al., Inferred response of ocean ecosystems to climate warming, in prep.
- Takahashi, T., et al., Global sea-air CO₂ flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects . Deep Sea Res., 49.1601-1622.2002.
- Watson, A. J., D. C. E. Bakker, A. J. Ridgwell, P. W. Boyd, and C. S. Law, Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO₂, Nature, 407, 730-733, 2000.
- Winguth, A. M. E., M. Heimann, K. D. Kurz, E. Maier-Reimer, U. Mikolajewicz, and J. Segschneider, El Ni no-Southern Oscillation related fluctuations of marine carbon cycle, Global Biogeochem. Cycles, 8. 39-63, 1994.