

The uptake, transport, and storage of anthropogenic CO₂ by the ocean

Nicolas Gruber

Department of Atmospheric and Oceanic Sciences & IGPP, UCLA

Acknowledgements

- Chris Sabine, Kitack Lee, Bob Key, and the GLODAP members
- Manuel Gloor, Andy Jacobson, Jorge Sarmiento, Sara Fletcher
- Doug Wallace and the ocean carbon transport community
- Jim Orr and the OCMIP members
- Taro Takahasi and the oceanic pCO₂ community
- The many people that made the Global CO₂ survey a success!
- NSF, NOAA, and NASA for their funding

THE ANTHROPOGENIC PERTURBATION

IN THE CONTEXT OF THE NATURAL C CYCLE

Sabine et al. (2003) SCOPE/GCP

Outline

- Introduction
- Air-sea CO₂ fluxes or the problem of separating the natural from the anthropogenic fluxes
- The importance of the ocean as a sink for anthropogenic CO₂
- How do we obtain fluxes from storage? An inverse approach
- On the role of anthropogenic CO₂ transport
- What do the OCMIP-2 models find?
- Summary and Outlook

Globally integrated flux: 2.2 PgC yr⁻¹

DISSOLVED INORGANIC CARBON (sDIC@35) [µmol/kg]

Determination of anthropogenic CO₂

We follow the ΔC^* method of *Gruber et al.* [1996] to separate the anthropogenic CO_2 signal from the natural variability in DIC. This requires the removal of

- i) the change in DIC that incurred since the water left the surface ocean due to remineralization of organic matter and dissolution of $CaCO_3$ (ΔDIC_{bio}), and
- ii) a concentration, DIC_{sfc-pi}, that reflects the DIC content a water parcel had at the outcrop in pre-industrial times,

Thus,

$$\Delta C_{ant} = DIC - \Delta DIC_{bio} - DIC_{sfc-pi}$$

Assumptions:

natural carbon cycle has remained in steady-state

ANTHROPOGENIC CO₂ [µmol/kg]

Column Inventory of Anthropogenic CO2 (mol/m2)

ANTHROPOGENIC CO₂ INVENTORIES

Anthropogenic CO₂ Inventories in ~1994

	Atlantica Inventory [Pg C]	Pacific ^b Inventory [Pg C]	Indian ^c Inventory [Pg C]	Global Inventory [Pg C]
Southern hemisphere	19	28	17	62
Northern hemisphere	28	17	3	48
Global	47 (42%)	45 (40%)	20 (18%)	112

See also poster by Sabine et al.

a) Lee et al. (submitted)

b) Sabine et al. (2002)

c) Sabine et al. (1999)

Anthropogenic CO₂ Budget 1800 to 1994

CO ₂ Sources	[Pg C]
(1) Emissions from fossil fuel and cement production ^a	244
(2) Net emissions from changes in land-use ^b	110
(3) Total anthropogenic emissions = (1) + (2)	354
Partitioning among reservoirs	[Pg C]
(4) Storage in the atmosphere ^c	159
(5) Storage in the oceand	112
(6) Terrestrial sinks = $[(1)+(2)]-[(4)+(5)]$	83

a: From Marland and Boden [1997] (updated 2002)

b: From Houghton [1997]

c: Calculated from change in atmospheric pCO₂ (1800: 284ppm; 1994: 359 ppm)

d: Based on estimates of Sabine et al. [1999], Sabine et al. [2002] and Lee et al. (submitted)

Ocean Inversion method

• The ocean is divided into n regions (n = 13)

Ocean Inversion method (cont.)

Basis functions:

In an OGCM, time-varying fluxes of dye tracers (Φ) of the form

$$\Phi(t) = \Phi(t_o) * (pCO_2(t) - pCO_2(t_o))$$

are imposed, and the model is run forward in time.

• By sampling the modeled distribution at the observation stations, χ , we obtain a transport matrix (A_{OGCM}) that relates the fluxes to the distribution:

$$\chi_{\text{OGCM}} = A_{\text{OGCM}} * \Phi.$$

• Modeled distributions are then substituted with the observed ones and the matrix A is inverted to get an estimate of the surface fluxes (Φ_{est}):

$$\Phi_{\rm est} = (A_{\rm OGCM})^{-1} \chi_{\rm obs}$$

AIR-SEA FLUXES OF ANTHROPOGENIC CO2

Anthropogenic CO₂ Flux for 1990: 1.8 PgC/yr

Gloor et al. (2003) Gruber et al. (in prep.)

preliminary results: Gruber et al. [in prep.]

ANTHROPOGENIC AIR-SEA CO₂-FLUXES

Gloor et al. (2003) Gruber et al. (in prep.)

OCMIP-2: ANTHROPOGENIC CO₂ FLUXES, STORAGE, AND TRANSPORT

J. Orr and OCMIP-2 (pers. comm)

OCMIP-2: ANTHROPOGENIC CO2 UPTAKE

	Uptake	Inventory (Pg)	
Model	1980-1989	1990-1999 (S650)	1765-1990
PRINCE	1.65	1.98	102
IPSL.DM1 (HOR)	1.67	1.98	
LLNL	1.78	2.08	108
CSIRO	1.78	2.11	108
MIT	1.91	2.29	117
NCAR	1.93	2.30	115
PRINC2	1.93	2.32	
IPSL(GM)	1.97	2.36	
MPIM	2.01	2.43	124
SOC	2.01	2.39	123
IPSL.DM1 (GM)	2.03	2.43	125
IGCR	2.05	2.47	127
PIUB	2.11	2.52	135
AWI	2.14	2.58	127
NERSC	2.38	2.84	146
UL	2.51	3.04	
MEAN	1.99+/- 0.23	2.38+/- 0.29	121+/- 12
RANGE	1.65-2.51	1.98-3.04	102-146
"DATA RECONS"	TRUCTION*"		104 +/- 20

^{*} Sabine et al. (pers. comm)

J. Orr and OCMIP-2 (pers.comm.)

Models tend to be on the high side relative to data reconstruction

OCMIP-2: FUTURE ANTHROPOGENIC CO2 UPTAKE

IS92a: RANGE FOR 2100: +/- 33%

S650: RANGE FOR 2100: +/- 30%

Summary

- By taking up about a third of the total emissions, the ocean has been the largest sink for anthropogenic CO₂ during the anthropocene.
- The Southern Ocean south of 36°S constitutes one of the most important sink regions, but much of this anthropogenic CO₂ is not stored there, but transported northward with Sub- Antarctic Mode Water.
- Models show a similar pattern, but they differ widely in the magnitude of their Southern Ocean uptake. This has large implications for the future uptake of anthropogenic CO₂ and thus for the evolution of climate.

Outlook and Challenges

While we have made substantial advances in our understanding of the role of the ocean as a sink for anthropogenic CO₂, there remain a number of important challenges.

- The magnitude and role of natural variability
- The response to climate change and other ant. perturbations

These problems need to be addressed by a combination of longterm monitoring of the ocean and the development of a hierarchy of models that are based on a mechanistic understanding of the relevant processes.

The End.