JGOFS Open Science Conference 5 -8 May 2003 8 May 2003 Washington, D.C. Washington, D.C.

Constraining Fluxes at the Top: Constraining Fluxes at the Top: Advances in Quantifying Air-Sea Carbon Dioxide Fluxes during the JGOFS Decade during the JGOFS Decade

Speaker: Rik Wanninkhof NOAA/AOML Commentator: Richard A. Feely NOAA/PMEL Commentator: Richard A. Feely NOAA/PMEL

Outline: Outline:

! **New techniques for determining gas transfer velocity New techniques for determining gas transfer velocity**

 \triangleright Parameterization of pCO₂ from SST, SSS, Chl and nutrients \triangleright **Estimation of global CO₂ air-sea fluxes**

F $\mathbf{F}_{av} = (\mathbf{k} \cdot \mathbf{s} \Delta \mathbf{p} \mathbf{CO}_{2})_{av}$

Gas transfer velocity Gas transfer velocity

Function of: Function of:Surface turbulence (wind speed) Surface turbulence (wind speed) Physical properties of gas and water Physical properties of gas and water **Thermodynamic component Thermodynamic component Function of: Function of:Temperature, Salinity, TCO₂ Biology (photosynthesis/respiration) Biology (photosynthesis/respiration) Transport (horizontal/vertical) Transport (horizontal/vertical)**

(B) Climatological $pCO₂$ in Surface Water for February 1995

k, 600 (cm/hr) k, 600 (cm/hr)

CO2 transfer velocity & exchange coefficient (K=ks): transfer velocity & exchange coefficient (K=ks): Monitoring using satellite wind speed (Geosat, SSM/I, ERS, QSCAT...) 1985-2002

(Boutin et al., 2003)

Gas Transfer Velocity: Wind Speed and Mean Square Slope Dependence

Data from 1997 NSF CoOP Coastal Air-Sea Exchange Experiment [Frew et al., 2003]

Jason-1 Altimeter Product

Gas Transfer Velocity, Feb 2002
From Jason1 Altimeter Backscatter and NSIDC ke Masks

JGOFS Open Science Conference

N. Frew / D. Glover WHOI 2003

CO2 gas transfer velocity: gas transfer velocity:summary summary and issues ! **Use of altimeter measurements and k Use of altimeter measurements and k-MSS relationship (Glover et al., 2002) MSS relationship (Glover et al., 2002) k-MSS estimates close to k-U Liss and Merlivat estimates** \blacksquare **(k-altimeter relationship calibrated with laboratory (wind/wave tank) measurements). measurements).** \triangleright Monitoring of k using satellite wind speed (Geosat, SSM/I, ERS, QSCAT...) **1985-present present** and a given k-U relationship: Strong k variability (including interannual) **Issue: Need for intercalibration of U retrieved from various instruments** ! **K deduced from various k K deduced from various k-U relationships differ (Boutin et al., GRL, 2002): U relationships differ (Boutin et al., GRL, 2002): Issue: Calibration of k-U relationships still needed**

Issue: Calibration of k-MSS relationships still needed

JGOFS Open Science Conference **-Boutin, Etcheto et al., JGOFS 2003 Boutin, Etcheto et al., JGOFS 2003**

Joint Global Ocean Flux Program Joint Global Ocean Flux Program

Major scientific question for the JGOFS program: **1. How much carbon is sequestered by the openoceans?**

Takahashi et al. CO 2 Air-sea Flux Climatology based on a 40-yr database of over 1,400,000 measurements of surface seawater pCO 2

Global Oceanic Uptake -1.5 ± 0.4 Pg C yr⁻¹

pCO2 versus Temperature in the Equatorial Pacific versus Temperature in the Equatorial Pacific 89 Data Sets Collected Between March 89 Data Sets Collected Between March 1992 and July 200 992 and July 2001

Large -Scale Observational Results: 1992-2002

El NiÒo: 0.2 El NiÒo: 0.2 -0.4 Pg C year 0.4 Pg C year-1 <code>Non El Niño: 0.7-0.9 Pg C year⁻¹</code> L a Niña: 0.8-1.0 Pg C year⁻¹ **Average: 0.6 ± 0.2 Pg C year Average: 0.6 ± 0.2 Pg C year-1**

from Feely et al. JGR (submitted) from Feely et al. JGR (submitted)

Influence of Chl and SST on pCO₂ observed during AESOPS and Astrolabe campaigns

pCO2 campaigns (nov 97 to dec 99) - Seawifs chl a (mar 98)

see POSTER Session 1 Theme 2, Boutin et al.: Air-sea CO2 fluxes in the Southern Ocean inferred from satellite data)

Boutin, Etcheto et al., JGOFS 2003

CARIOCA CARIOCA ∆pCO2 and CO2 Flux deduced from QSCAT Flux deduced from QSCAT winds and K winds and K-U Wanninkhof (U Wanninkhof (1992) relationship 992) relationship

Air sea flux from CARIOCA pCO₂, atmospheric pCO₂ derived from atmospheric pressure measured onboard the buoy, satellite (QSCAT) wind speed and K-U Wanninkhof relationship.

 $6/16/2003$ \overline{POSTER} Session 1 Theme 1, Etcheto et al.: Recent results from CARIOCA drifters in the Southern Ocean **From January to July 2002: From January to July 2002:** $Mean \Delta P = -12.6 \mu atm$ **Mean Air Mean Air-sea flux = sea flux = -3.8 mmol m-2 day-¹**

pCO2 regressions South of Tasmania and New Zealand regressions South of Tasmania and New Zealand

see POSTER Session 1 Theme 2, Boutin et al.: Air-sea CO₂ fluxes in the Southern Ocean inferred from satellite data $\overline{}$

JGOFS Open Science Conference

Boutin, Etcheto et al., JGOFS 2003

MLR Regression pCO₂ versus SST, SSS, Chla, NO3 and SiO4 in the Equatorial Pacific using Equatorial Pacific using

89 Data Sets Collected Between March 89 Data Sets Collected Between March 1992 and July 200 992 and July 2001

Global map of existing and planned near-surface $\tt pCO_2$ measurements

Current Satellite Sensors Current Satellite Sensors

Wind speed: (2 scatterometers in the air) Wind speed: (2 scatterometers in the air) -Scatterometer: 1999 -TBD Seawinds on ADEOS2 2003 Seawinds on ADEOS2 2003 -TBD

Sea Surface Temperature: Sea Surface Temperature:

-**Visible/IR radiometer: Visible/IR radiometer: AVHRR 1982 -TBD**

GOES -TBD Meteosat 2nd generation 2002 -Microwave radiometer: TMI (40S Microwave radiometer: TMI (40S -40N) 1997 -TBD AMSR -E on AQUA 2002 E on AQUA 2002 -TBD AMSR on ADEOS2 2002 AMSR on ADEOS2 2002 -TBD

RA on ENVISAT 2002 RA on ENVISAT 2002-TBD

Ocean Color: (6 radiometers in the air) -Visible/IR radiometer: Seawifs Visible/IR radiometer: Seawifs 1997 -2003 MODIS on Terra 2001-2005 MERIS on ENVISAT 2002 MERIS on ENVISAT 2002 -2007 MODIS on AQUA 2002 MODIS on AQUA 2002 -2007 POLDER 2 & GLI on ADEOS2 2003 POLDER 2 & GLI on ADEOS2 2003-TBD Sea Surface Height anomalies: (3 altimeters) Sea Surface Height anomalies: (3 altimeters) -Altimeter: Topex **-Poseidon Poseidon 1992 -TBD Jason 199 1 -TBD**

Conclusions Conclusions

!**Remote sensing can be Remote sensing can be a powerful tool powerful tool to monitor time to monitor time and space variations of variations of several parameters influencing several parameters influencing CO 2distribution distribution and air -sea fluxes sea fluxes (wind speed, SSH, SST, speed, SSH, SST, Chl).**

- **Remote sensing can Remote sensing can help interpret and extend interpret and extend in space and time in situ time in situ measurements measurements**
- **Remote sensing can provide constraints Remote sensing can provide constraints for biogeochemical modelling biogeochemical modelling**

! **In situ measurements are essential to: In situ measurements are essential to:**

• Validate remotely sensed and parameters **derived from remote sensing measurements covering derived from remote sensing measurements covering various oceanographic provinces at various time scales. various oceanographic provinces at various time scales.** •**Determine the processes contolling variations of parameters observed by remote sensing: measurements of parameters observed by remote sensing: measurements of parameters not accessible from space. parameters not accessible from space.**